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I n  this paper the mathematical formulation associated with waves trapped by 
submerged cylinders is recast as a standard eigenvalue problem. I n  this way the 
existence is proven of trapped waves for every frequency 52, and for arbitrary 
geometry of the submerged cylinder. At the same time a simple expression for the 
first eigenvalue and eigenmode, correct in the limits 52 --f 0 or 52 + co , is derived. The 
expression can be a useful approximation for a structure relatively transparent to 
the wave action such as, for instance, a semisubmersible platform. 

1. Introduction 
Wave trapping in an uneven bottom topography has been known for a long time. 

The first report was by Stokes (1846), who showed the existence of edge waves on a 
plane beach. This matter has been further studied by Ursell (1952) and, in a 
penetrating work, trapped waves in shallow water have been analysed by Longuet- 
Higgins (1967). 

In  this context the basic physical principle can be easily understood. I n  shallow 
water the wave velocity is (gh)i and over a submarine ridge, uniform in the 
longitudinal x-direction, this velocity is [gh(y)] i  < (gh)i. A wave propagating over the 
elevation and oblique to the y-direction tends to  bend back towards the elevation as 
i t  encounters regions of increasing wave velocity. The mathematical problem here is 
similar to the determination of bound states in a one-dimensional Schrodinger 
equation, a point that has been observed by Longuet-Higgins. 

One way to  consider submerged structures is as if they were an abrupt and 
localized sea bottom elevation. In  this sense the existence of trapped waves over 
them seems plausible, and this fact was proven by Ursell (1951) for a circular 
submerged cylinder in the low-frequency limit. t 

In the last ten or fifteen years relatively slender and submerged structures have 
been extensively used in offshore engineering. Relevant examples are the semi- 
submersible platforms and wave energy extraction devices. Since then, the response 
of such structures to  waves has been experimentally and theoretically analysed 
under different conditions. I n  particular, D. V. Evans has recently observed, in the 
laboratory, that ‘a t  certain frequencies the incident wave train would excite large 
amplitude wave motions, confined to the immediate vicinity of the cylinder, which 
would persist after the wavemaker was switched off’. This observation has 

t One of the referees has called the author’s attention to a paper by Jones (1953), where the 
existence of trapped waves for symmetric bodies has been demonstrated. More recently, Ursell 
(1987) re-analysed this problem and arrived at  conclusions similar to the ones presented in $ 3  of 
this work. 
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apparently motivated him to analyse trapped waves over submerged cylinders ; see 
McIver & Evans (1985). 

The purpose of the present paper is to discuss the existence of trapped waves over 
submerged cylinders, and some of their properties. However, not only is the 
phenomenon itself not yet well known, but also the mathematical technique to be 
used in this work - the weak formulation - has not been very much explored in the 
water-wave specialized literature. To fill this gap, $2 presents a short discussion, 
based on an analogy with the waveguide problem, where most of the results of this 
work are anticipated, and a physical background for the mathematical technique is 
given. In  $3, trapped waves are recast as a standard eigenvalue problem and their 
existence, together with some relevant properties, is demonstrated. In  $4, minimum 
principles of eigenvalue theory are used to determine lower bounds, and a convenient 
asymptotic approximation is derived for a body not too close to the free surface. This 
approximation has been used in $5 to derive a necessary condition for trapped-mode 
excitation, and it can be useful to analyse qualitatively the behaviour of relatively 
transparent structures such as, for example, a semisubmersible platform. 

In  a companion paper (Aranha 1988), the excitation of a trapped mode by the 
incoming wave and the ensuing nonlinear resonant response of a slender structure 
will be analysed. I n  this context one may assess the importance that trapped-mode 
excitation may have for the analysis of a typical ocean structure. 

2. Trapped waves: an analogy with the waveguide problem 
In  this paper a submerged cylinder, with longitudinal axis coincident with the 

x-direction, will be considered. All variables will be non-dimensionalized using the 
length B, the frequency b and the acceleration due to  gravity g.  Non-dimensional 
variables will be indicated by B, Q, etc., and the geometric definitions are given in 
figure 1.  

At the frequency Q and water depth h, the wavenumber K,(Q) is given by the 
dispersion relation 

Q2 = K,(Q) tanh (K,(O) h). (2.1) 

Let S be the minimum distance between the free surface and the submerged body aB. 
If one supposes, for a while, that the body has a rectangular cross-section with sides 
parallel to the (y,z)-axes then, above the body, the wavenumber is K,(Q), where 

9, = K J Q )  tanh (K,(Q) 8). (2.2) 

Since certainly S < h then, from (2.1) and (2 .2) ,  K,(O) > Ko(Q) .  I n  the region Iyl < b 
the wave velocity is c,(Q) = O/K,(O) and in the region IyJ > b it  is co(Q) = Q/K,(Q) ,  
where c,(Q) < c,(Q). As explained in the introduction, a wave generated in the region 
IyI < b and oblique to the y-axis, tends to bend back to this region as it encounters 
an increasing wave velocity field. This wave, confined basically to the region IyJ 4 b 
and propagating in the x-direction, is called a ‘trapped wave ’. 

A sketch of its wave front A ,  AA,  is shown in figure 1 (b)  and it is quite clear that 
the submerged body works as if it were a waveguide for the trapped wave. From this 
similarity some results can be inferred by analogy. They will be described here and 
proven in the next section. 

The first is the following : the longitudinal wavenumber K T ( Q ) ,  shown in figure 1 ( b ) ,  
cannot take an arbitrary value. Indeed, to enforce constructive interference, only a 
discrete set of values can be taken. These discrete values can be associated with the 
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FIGURE 1. (a) Geometric definitions for the cross-section. (b )  Trapped wave guided by the 
submerged body (plane z = 0). 

transverse eigenmodes, and they should be determined by means of an eigenvalue 
problem. 

From the waveguide analogy it follows also that KT(Q) must have an upper bound, 
namely K,(Q) < K,(Q). In  fact, constructive interference in a waveguide implies that 
the wave front A ,  A ,  indicated in figure 1 ( b ) ,  should have the same phase as the 
wave front AA, .  I n  one period the wave front must then cover the distance F,FF,, 
with a local wave velocity of c,(s2). Since A ,  and A ,  have the same phase, the 
longitudinal wave covers the wavelength A ,  A ,  with velocity QIK,, and from the 
geometric inequality A ,  A ,  > F ,  FF, i t  follows that Q/KT > c,(Q) = O/K,, or 

Details of the waveguide problem can be found in Achenbach (1975), but the 
trapped wave is not exactly confined to (y( < b. It must spread out beyond this 
region, although it should decay with IyI when IyI + 00. Its asymptotic behaviour 
must then be described by 

(2.3) 

in the limits y+ f m. Notice that the z-dependent function satisfies both the 
impermeability condition on the sea bottom z = -h  and the free-surface condition 
a f / a z  = Q 2 f  on z = 0. From the continuity equation and (2.3), one obtains the 
relation h,(Q) = (K$(Q) - Ki(Q))i. It follows then that KT(Q) is bounded from below 

(2.4) 

As has been said above, the trapped-mode wavenumber KT(Q) can be determined 
by a transverse eigenvalue problem. In general the eigenvalues are well separated, 
and so only a finite number can be located in the finite interval indicated in (2.4). Or, 
in short, for a given frequency Q only afini te  number of trapped modes are expected 
to exist.? 

t This result is essentially the same as the one derived for the bound states of the one- 
dimensional Schrodinger equation. 

KT(Q) < K,(Q).  

p ( x ,  y, z ,  t )  - A: e-Aolul coshK,(z+h) @TZ-Ot), 

by K,(Q), or 

K O ( Q )  < KT(Q) < K s ( Q ) .  
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If T(y, z )  is the transverse eigenmode, the trapped wave can be expressed by 

9 ( x ,  y, z ,  t )  = T ( y ,  z )  ei(KT(n)s-at). (2.5) 

In  this paper the pair {K,(Q) ; T(y, x ;  Q)} will be determined by a standard eigenvalue 
problem obtained, however, by means of a mathematical technique known as 'weak 
formulation '. To give a clear physical meaning to this technique some results from 
analytical mechanics will be first recalled here. 

In  a discrete system, defined by the generalized coordinates {qn( t ) ;  n = 1,.  . . , N } ,  
the Lagrangian is a function of the form 9 ( q n ;  4,). If the system is in free 
vibration, all generalized coordinates oscillate with the same frequency 52, and so 
qn(t)  = qn,o e-int. In  this case 9 = Lf(qn ,o )  and the Lagrange equations of motion 
reduce to i39/i3qn,o = 0. The eigenvalue-eigenmode {a; qn,o,  n = 1,  . . . , N }  can be 
as determined in the following way : 52 is such that there exists a non-trivial {qn, o ]  
for which the Lagrangian is stationary. 

In  the present work the problem is defined in a continuum and the system is 
described by the field p ( x ,  y,  z )  = T ( y ,  z )  ei(KTx-Rt) instead of by the discrete variables 
{ q n , J .  If A ,  is the entire fluid region in the plane (y, z ) ,  the non-dimensional kinetic 
energy is given by 

In (2.6), the asterisk stands for the complex conjugate, and 

. a  a - a 
V = j - + k - - ,  V = V + i - .  

ay az ax 

The potential (gravity) energy is now given by 

r m  
U ( T )  = &Q2J T2(y, 0) dy, 

-a2 

and so the Lagrangian is 

(2.7) 

to 

Lf(T) = [ (VT)2+K$7'2 ]dAco-$2  T 2 ( y , 0 ) d y .  (2.9) I,. 
If K ,  is supposed given, the eigenvalue problem can now be characterized as: to 
determine Q such that there exists a non-trivial T ( y , x ; 5 2 )  for which the Lagrangian 
9 ( T )  is stationary. The weak equation to be derived in the next section is just the 
stationary condition for 9 ( T ) .  

3. The existence of trapped waves 
In the preceding section, some properties concerning trapped waves have been 

inferred from the waveguide analogy. Furthermore, an eigenvalue problem, based on 
a Lagrangian formulation, has been proposed as the mathematical framework for the 
trapped-wave theory. The purpose of the present section is to give a firm 
mathematical background to these results. 

There are two main questions that will be tackled here. The first is to show how, 
from a classical formulation, one can obtain the stationary condition of (2.9) by 
means of the so-called 'weak formulation'. The second is to show then that the 
related eigenvalue problem has a solution. This latter topic is just the existence 



Properties of waves trapped by submerged cylinders 425 

theorem for trapped waves, and it will be demonstrated together with the results 
anticipated in the last section. 

A trapped wave is a function of the form (2.5) that satisfies the continuity 
equation, the free-surface boundary condition aT/az = Q25! a t  z = 0, and the 
impermeability condition on the body surface aB and the sea bottom z = - h. 
Furthermore, it must decay exponentially as y + co, and this latter condition 
requires that KT(Q) > K o ( Q ) ;  see (2 .4 ) .  In  this context a trapped modet is a pair 
{K = K,(Q); $ = T ( y ,  z;K,)} for which there exists a non-trivial solution of the 
following set of equations : 

V2q5-K2$ = 0 ;  ( Y , z ) E A , ,  (3.1 a )  

( 3 . l b )  

( 3 . 1 ~ )  

a4 
- ( Y ,  0) = Q2$(Y, O),  az 

w - n laB = 0, 

a$ 
- ( Y ,  aZ -h)  = 0, ( 3 . l d )  

3 ( y ,  z )  + 0 when IyI + co ; K 2 Ko(Q).  ( 3 . l e )  

The basic difficulty of this eigenvalue problem is related to the infinite size of the 
region A,, and it can be overcome in the following way : the region A ,  is divided into 
a finite part A (I yI < b) ,  where the body is, and two strips A ( y  2 f b) .  In  the regions 
A' the solution of (3 .1 )  will be denoted by q5& ( y ,  z )  and these can be expanded in 
Fourier series using the complete orthonormal set of functions 

aY 

fo(z) = Fo coshK,(z+h); Q2 = Ko(Q)  tanhK,(Q)h, 

f n ( z )  = Fn cosxn(z+h); Q2 = - x n ( Q )  tanxn(Q)h, n = 1 ,2 ,  .... 
If $ ( y ,  z )  denotes the potential in the region A ,  consider the Fourier expansion 

I (3 .3 )  

The only solution of (3 .1 )  in the regions A', given by (3 .3 )  on the lines y = + b ,  can 
be written as m 

$ * ( y ,  z )  = C Lz($ )  e-hn(1yl-b) f n M ;  Y P +b,  (3 .4 )  
n-0 

with ho(K) = (K2-Ki(Q))$ h,(K) = (K2+x;(Q))i .  (3 .5 )  

For future reference it is important to observe here the following identity : 
m r r  ,. 

t p(z,y, z )  is the trapped wave, analogous to the guided wave, and {K,(SZ) ;T(y,  z ;  KT)} the 
trapped mode, analogous to the transverse eigenmode in a waveguide. 
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where F* are the free surfaces of the fluid regions A’. By definition $(-+b,z )  = 
$&( f b, z ) ,  and (3 .4)  will be the analytic continuation of $(y, z )  if and only if 

In this way the problem has been reduced to the determination of a function 
$(y,z), defined in the finite fluid region A ,  that  satisfies the continuity equation 
( 3 . l a )  and the boundary conditions ( 3 . 1 b d ) ,  and (3 .7)  on the boundary of A. Since 
interest is centred on a non-trivial solution (eigenvalue problem), it seems natural 
to look for an energy expression associated with this differential operator, and 
the first task is to restrict $(y,z) to the set of functions with finite energy, namely 
$(y,z)~Wil)(A),  where WF)(A) is the linear space of all functions with finite 
energy 

( J ” / A ( v ~ ) 2 ~  < o3 if!P(y,z)EWi1)(~)).  

Notice that the finite energy requirement is weaker than the continuity of the 
Laplacian (see (3 .1a) ) ,  needed in the classical formulation, and for this reason the 
following procedure is known by the name ‘weak formulation ’ in the mathematical 
literature ; see Ladyzhenskaya & Ural’tseva (1968) for further details. 

To obtain the energy expression, the continuity equation (3.1 a )  is multiplied by an 
arbitrary !P( y, z )  E W!$(A), integrated over A ,  and the Laplacian operator is then 
integrated by parts. With the help of the boundary conditions the following identity 
is obtained : 

Jf($, y ;  K )  = /JAV$-V ! P d A + K 2 / / A $ ! P u - Q 2 J  F $(y,O) ully, 0)dy 

+ c A J K )  L:($) LZ( !P) = 0, 
m 

(3.8) 
n=o 

where F is the free surface of A .  
A trapped mode is a pair ( K T ;  T(y, z ;  K,)  + 0) for which M(T, !P;KT) = 0 for all 

Y(y, z )  G Wil)(A). If one observes that M ( $ ,  $; KT) is just twice the Lagrangian of the 
field $(y,z)eiKZ, see (2.9), (3 .6) ,  (3 .8) ,  then the ‘weak equation’M(T, Y: KT) = 0 has 
a very clear physical meaning : it is just the stationary condition for the Lagrangian, 
as anticipated in $ 2 .  

Notice that the eigenvalue problem (3 .8)  can be defined in two alternative ways: 
in the first, Q2 is supposed given and the problem is to determine particular values 
of K 2 ( Q )  ; in the second, K 2  can be considered given and the problem is to determine 
particular values of Q2(K) .  The first alternative will be taken here, but identical 
results could as well be derived using the second. In  both cases the coefficients {An}  
are nonlinear functions of the eigenvalues K 2  (or Q2) and so a special strategy is 
needed to prove the existence of a solution (and also to compute it numerically). A 
brief analogy with a discrete mechanical system can clarify the route to be followed. 
If a mechanical system has generalized mass and stiffness matrices, b(Q) and c(Q) 
respectively, both frequency dependent, the natural frequencies Q, can be determined 
in the following way: they are the roots of the equations m,(Q) = 0, where m,(Q) 
are the eigenvalues of the matrix M(Q) = -Q2b(Q)+c(Q). In a similar way, let 
{m,(K)  ; E,(y, z ; K ) ,  j = 0, 1 ,2 ,  . . .} be the eigenvalues-eigenvectors of the bilinear 
form M ( .  , . ; K )  or 

M(E,, !P; K )  = E, !Pa, all !P(y, z )  E W p ) ( A ) .  (3.9) 
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Obviously, trapped modes are associated with the roots of the equations mj(K)  = 0, 
and attention is now turned to demonstrating the existence of at least one of these 
roots. But before this is done i t  is convenient to introduce some definitions that will 
be used later on. A definitive feature of a submerged body is the existence of a fluid 
region A,  above the body, where (see figure l(a)) 

A ,  = {(y, z ) ,  Iyl d b ;  0 < z < -&. 
If now M,(.  , . ; K )  is the quadratic form 

M , ( Y ,  Y ; K )  = ~ ~ ~ ~ ( V ~ 2 d A , + K z ~ ~ A ~ Y z ~ s - 5 2 2  IF Y2(y,0)dy, (3.10) 

then obviously 

M (  Y,  Y ;  K )  2 M,( Y,  Y ;  K ) ;  Y ( y ,  2 )  E w p ( A ) .  (3.11) 

The bilinear form M ( $ ,  Y ;  K )  is symmetric and the associated quadratic form 
M ( $ , $ ;  K )  is bounded from below.? In this way the minimum (and also minimax) 
principle of eigenvalue theory can be used (see Courant & Hilbert 1953 for details) 
and it turns out that 

m,(K 

(3.12) 

etc., where ‘all’ Y means an arbitrary element of W!$)(A),  and Y I E ,  means that 

[ [ A E o Y d A  = O .  

If {K,(52); K,(52)} are defined by the dispersion relations (2.1), (2.2) the following 
theorem can be easily proved : 

THEOREM. Let M ( .  , . ; K )  be the bilinear form (3.8) and {mj(K) ; j = 0, 1 ,2 ,  . . .} be the 
eigenvalues. Then 

(i) m@), a n y  j, i s  monotonically increasing with K ; 
(ii) for K > K,(52), mj (K)  > 0;  j = 0,1 ,2 ,  . . .; 

(iii) for K = K,(52) there exists at least one negative eigenvalue for all frequencies 52 

(iv) for K = K,(O) there can be only aJinite number of negative eigenvalues {mo(Ko); 

(v) m,(K,) -to- when either 52+0 or 52-t  co. 

(mo(K,) < 0 all 52 > 0) ; 

m,(K,) ; . . . ; mL(Ko)},  L = Jinite ; 

Proof. Since dhn/dK > 0, see (3.5), then M ( Y ,  Y ; K + S K )  > M (  Y, Y ;  K )  if Y + 0 
(but Y otherwise arbitrary). From the minimax principle of eigenvalue theory, the 
eigenvalues mj(K)  must increase with K (see Courant & Hilbert 1953). This proves (i). 
To prove (ii) it suffices to show that the quadratic form M,( Y,  Y ;  K ) ,  defined in 
(3.10), is positive definite for K > K,(52). But in A ,  the Fourier decomposition 

m 

Y(Y,  2 )  = C A n ( y ) L ( z )  
n-o 

t JF dz(y, 0) dy < c(A)  [ jjA((Vq5)z +K,(B) 4’) dA], a result that is a direct consequence of the so- 
called Sobolev’s embedding theorems ; see Sobolev (1963). 
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can be used, where {A(z)} are defined by expressions like (3.2), with S in place of h. 
Using this expansion in M , ( Y ,  Y ;  K )  and the orthogonality of the modes {L(z)} it 
follows that 

M,(Y, Y ;  K )  = (KZ-K,(Q)) Y2dA. 1.L 
So M (  Y, Y ;  K )  > 0 if K > K,(52), and this proves (ii). From the minimum principle 
(3.12) i t  follows that 

where 

J J A  

(3.13) 

(3.14) 

In  the above expression, n, is the vertical component of the normal n to aB, where 
n points outward from the fluid region. The coefficient I ( K o ;  aB) depends only on the 
wavenumber K O  and the geometry i3B of the cross-section, and it is an easy task to 
check that I(K,; a s )  is always positive for a submerged body. So m,(K,) < 0, see 
(3.13) and (3.14), which proves (iii). Since the quadratic formM( Y, Y ;  K O )  is bounded 
from below and the sequence {mj(Ko)} accumulates a t  infinity (see Courant & Hilbert 
1953 for details), then M ( . , . ; K o )  can have at most a finite number of negative 
eigenvalues. This proves (iv). When Q+ 00, Q2S also does, and K,(SZ) +a2 = Ko(SZ). 
Then mo(K,) + mo(Ko) ,  but mo(K,) > 0 and mo(Ko)  < 0. The limit mo(Ks) + mo(Ko) is 
possible only if mo(Ko) + 0- when SZ -f 00. When 52 --f 0, 

and this is a positive semidefinite quadratic form with minimum value equal to zero 
(Y = 1). Then mo(Ko) + 0- when a + 0 and this completes the demonstration of the 
theorem. 

From (i), (ii) and (iii) an important conclusion can be derived: the equation 
mo(K)  = 0 has a unique solution KT(SZ), where K,(Q) < KT(Q) < &(a). This proves 
the existence of a t  least one trapped mode. From (i) and (iv) it follows that the 
number of trapped modes is always finite. They correspond to the unique roots of 
the equations m j ( K )  = 0 , j  = 0, 1, . . . , L and, from the minimum principle, these roots 
are ordered as 

Ko(Q) < K T , L  d . . . < KT.1 d KT,o = KT(52). 

From (v) it is easy to check that KT(SZ)/Ko(SZ)+l when 52-0 or 52+00. These 
conclusions are summarized next. 

COROLLARY. Given an arbitrary submerged body 
(i) for  any frequency 52 there exists at least one trapped mode (KT(S2) ; T,(y, z ;  a)}, 

where KT(L2) is the unique root of the equation mo(K)  = 0 and To@, z ;  52) = Eo(y, z ;  KT) ; 
(ii) K O ( d )  < KT(52)  < K S ( ~ ) ;  
(iii) KT(Q)/KO(Q)+l when O+O or sZ+00,  

(iv) for any frequency SZ there are at most (L+ 1) trapped modes, L = Jinite, where 
KT,j,j = 0 , 1 , .  . . , L are the unique roots of the equations m j ( K )  = 0, j = 0 ,  1, . . . , f, and 
q ( y 3  a) = Ej (y ,  z ;  K T , j )  ; 
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(v) i f  L 2 1 then 
Ko(Q) < KT,L d . . . d KT,i < KT,o = KT. 
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The trapped mode { K T ;  To@, z ;  a)} will be called the 'lowest trapped mode' since 
i t  is associated with the lowest eigenvalue mo(K) .  Since this is the only one whose 
existence is always granted it will be studied in some detail next. The scheme used 
to prove the existence of a trapped mode could also be used to determine it 
numerically. In  particular, the Rayleigh quotient can be employed to determine a 
lower-bound approximation for KT(52), a topic to be explored in the next section. 

4. The lowest mode: some properties and an asymptotic approximation 

and (3.8) - see also (2.9) - it follows that 
Let ((KT(52) ; T&, z ;  52)) be the lowest trapped mode at the frequency 52. From (3.6) 

Using (4.1) a t  the frequencies 52 and 52+652 and then letting SSZ-tO,  one obtains 

J -03 

where, obviously, e is the longitudinal trapped-wave 'group velocity '. As should be 
expected, this value plays an important role in the nonlinear analysis to be addressed 
in the companion paper (Aranha 1988). Another relation that will be used then is 

In  fact, from (4.2), 

J J A ,  J J A ,  

where the inequalit,y is due to (4.1) with Y = To. Integrating now between 52 and 252, 
relation (4.3) is obtained. 

Once the existence of trapped modes is demonstrated i t  is important to know 
under which conditions this mode will be excited and, if so, what are the features of 
the response. It certainly helps to answer these questions if a convenient 
approximation for the lowest mode {KT(52) ; To(y, x ;  a)} is derived, and the remainder 
of this section is dedicated to this issue. 

The basic idea is to use the Rayleigh quotient to approximate KT(Q) ,  but a 
judicious choice of the trial function must be made. The following observation can 
be helpful in this context: since l ( K o ;  aB) + O  when 52+0 or 52-t co, see (3.14), then 
from item (iii) of the corollary (see $3)  one obtains 
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1 .o I 
H 
B = 2b 

KOB 

FIQURE 2. Comparison between the lower bound (4.5) (---) and the exact value computed by 
McIver & Evans (1985, figure 5 b )  (-). 

The approximation T o ( y ,  z ;  52) z f o ( z )  is then appropriate, for an arbitrary geometry, 
in the low or high frequency limits. Notice that any submerged body is transparent to 
the wave action in the limits 52 --f 0 or 52 --f CO, and the parameter I (Ko ; i3B) can gauge, 
in some sense, the intensity of the wave action. A structure relatively distant from 
the free surface is relatively transparent to wave action in the whole range of 
frequencies ( I (Ko;  i3B) is small for all 52) and for this class of geometries .the 

should be appropriate? for an arbitrary 52, Notice that the derivative of (4.4) is 
discontinuous a t  y = b,  but this is permissible in the finite energy space WC)(A)  (in 
the same line, recall that trial functions used in the Rayleigh quotient must satisfy 
only the essential boundary conditions). Placing (4.4) into the identity M(To, To; 
K T )  = 0, the following quadratic equation in ho/Ko is obtained: 

As has been said, the root of (4.5) gives a lower bound for ho/Ko, and it is 
asymptotically correct when I (Ko ; 8s) + 0. I n  figure (2) this lower bound is compared 
with numerical results obtained from the full theory ; see McIver & Evans (1985). As 
is clear, the approximation (4.5) improves drastically when SIB changes from 0.05 
to 0.25. 

Since the approximation (4.5) is better the smaller I (Ko;  i3B) is, it is important to 
get an idea of the values of this parameter in the two cases shown in figure 2. For a 
circular cylinder in deep water it is not difficult to check that 

I (Ko;  8B) = 27cKi e-Ki(2S+B)I 0 (K 0 7  ) .  B = 1,  (4.6) 
where I,(. ) is the modified Bessel function (see Abramowitz & Stegun 1964). 

!mu, 2 ;  n) +f " (Z) .  

t Indeed, for infinite water depth, (4.4) is correct in the limit &'+ 00, in which case h,+O and 
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From (4.6) it follows that, in the range 0 < K O  B < 2, I (Ko;  aB) is monotonically 
increasing with K O  B in both cases, its maximum values being 6.38 and 2.86 when SIB  
is equal to 0.05 and 0.25, respectively. The error, as shown in figure 2, also increases 
monotonically with K O  B in this range and for the deeper cylinder (SIB = 0.25) it  is 
small for K O  B = 0.5, when I ( K o ;  aB) = 0.79. A typical semisubmersible platform has 
two rectangular pontoons with beam B x 16 m, width D x 8 m, length L x 100 m, 
placed a t  depth S x 12 m and separated from each other by a distance W x 60 m (see 
Pinkster & Huijsmans 1982). Considering the two pontoons together in deep water 
it follows, in this case, that 

] ( K O ;  aB) = 4Ki ePZKoS (1-ePZKoD); B = 1.  (4.7) 

The maximum of (4.7) is of order 0.74 for K,B around 1.6. Since this value is 
comparable with the one for the deep circular cylinder (XIB = 0.25) a t  K O  B = 0.5, 
it can be anticipated that approximation (4.5) should work very well for this class of 
ocean structures. The next section displays a direct application of expression 
(4.5). 

5. The necessary condition for excitation of a trapped mode 
A trapped mode can be excited if the incoming waves have the same frequency 52 

and longitudinal wavenumber KT(52) as the trapped mode. Since K,(Q) > Ko(S2), only 
nonlinear interactions of incoming waves can excite this mode. In  this context, 
consider two incoming waves, one with frequency w1 and direction a, and the other 
with frequency w2 > w1 and direction a2, where ai is the angle between the wave 
direction and the x-axis. 

In  this way a trapped mode can be excited by a convenient combination of f signs 
in expression (5.1), where 

2 2  

C C exp[+iKo(wj) cosaixfKo(w,) cosa(x] exp[fi(wifwi)t] 
i=l i=l 

= exp[i(K,(Q)x-SZt)]. (5.1) 

Using the deep-water dispersion relation, Ko(o,) = w i ,  it is not difficult to check that 
only the combination w2 - w1 can excite a trapped mode, and then 

52 = w2-wl, K,(Q) = w i  cosa2-w: cosal. (5 .2 )  

It is certainly possible to make a general analysis of this excitation condition, but a 
much clearer picture can be obtained if (5.2) is specialized to the class of geometries 
analysed in the last section, namely those that are relatively transparent to the wave 
action. In this case the parameter ho/Ko is small, see (4.5), and from (3.5) it follows 
that 

(5 .3)  

Then with an error of order 0.5(h0/K0)2 - roughly 2 %  for the semisubmersible 
analysed in the last section - K T ( Q )  can be taken equal to Ko(52) = 52' in (5.2). In  this 
way the simple excitation condition 

(5.4) 

can be obtained. So, for a given wlr al, w 2 ,  there always exists an a2 that satisfies (5.4) 
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and for which a trapped mode can be excited. Thus this phenomenon, although a rare 
event - as, in essence, all resonant phenomena are - is perfectly possible. 

In  nature the two harmonic waves considered could be associated with a local sea 
and a swell. If the waves are not pure harmonics but have a spectral density, given 
by the usual expression 

where wi is the peak frequency and f,( . ) is the spectral density function of form, then 
(tq; t w , )  will also satisfy (5.4), for the same pair (al; a*), if (q; w 2 )  do. In this case 
the excited trapped mode will have a frequency ti2 and so a spectrum of trapped 
modes will be excited. The important point is to  observe that, in this circumstance, 
the whole spectrum of incoming waves will give energy to this resonant phenomenon. 

6. Conclusion 
I n  this paper the existence of trapped waves for arbitrary frequency and geometry 

of the submerged body has been demonstrated. Furthermore, an asymptotic 
approximation for the lowest trapped mode was derived and it has been shown that 
such an approximation should give good results for a body relatively transparent to 
wave action, such as a semisubmersible platform. 

Necessary conditions for trapped mode excitation have been also analysed and it 
has been shown that, although a rare event in nature, it can be of importance since, 
when excited, all components of the sea spectrum give energy to this resonant 
phenomenon. In  a companion paper (Aranha 1988) the features of the nonlinear 
resonant response will be analysed. 

The author would like to acknowledge the help of Eng. Celso Pup0 Pesce in reading 
and discussing this work. 
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